[ad_1]
Caradonna, T. Blockchain and society. Informatik Spektrum 43, 40–52 (2020).
Ciulei, A.-T., Creţu, M.-C. & Simion, E. Preparation for post-quantum era: a survey about blockchain schemes from a post-quantum perspective. Cryptology (2022).
Gupta, D. S., Karati, A., Saad, W. & da Costa, D. B. Quantum-defended blockchain-assisted data authentication protocol for internet of vehicles. IEEE Trans. Veh. Technol. 71, 3255–3266 (2022).
Cojocaru, A., Garay, J., Kiayias, A., Song, F. & Wallden, P. Post-quantum security of the bitcoin backbone and quantum multi-solution bernoulli search. arXiv preprintarXiv:2012.15254 (2020).
Brassard, G., Chuang, I., Lloyd, S. & Monroe, C. Quantum computing. Proc. Natl. Acad. Sci. 95, 11032–11033 (1998).
Britt, K. A. & Humble, T. S. High-performance computing with quantum processing units. ACM J. Emerg. Technol. Comput. Syst. (JETC) 13, 1–13 (2017).
Giusto, E., Vakili, M. G., Gandino, F., Demartini, C. & Montrucchio, B. Quantum pliers cutting the blockchain. IT Prof. 22, 90–96 (2020).
Chen, L. et al. Report on post-quantum cryptography Vol. 12 (US Department of Commerce, National Institute of Standards and Technology, 2016).
Gisin, N., goire Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195, https://doi.org/10.1103/revmodphys.74.145 (2002).
Nakamoto, S. B.: A peer-to-peer electronic cash system. Cryptography (2009).
Wang, S. et al. Blockchain-enabled smart contracts: Architecture, applications, and future trends. IEEE Trans. Syst. Man Cybern. Syst. 49, 2266–2277 (2019).
Patwary, A. A.-N. et al. Authentication, access control, privacy, threats and trust management towards securing fog computing environments: A review (2020). arXiv:2003.00395.
Hu, W., Hu, Y., Yao, W. & Li, H. A blockchain-based byzantine consensus algorithm for information authentication of the internet of vehicles. IEEE Access 7, 139703–139711 (2019).
Wu, M. et al. A comprehensive survey of blockchain: From theory to iot applications and beyond. IEEE Internet Things J. 6, 8114–8154 (2019).
Uddin, M. A., Stranieri, A., Gondal, I. & Balasubramanian, V. A survey on the adoption of blockchain in iot: Challenges and solutions. Blockchain Res. Appl. 2, 100006 (2021).
Szydlo, M. Merkle tree traversal in log space and time. In International Conference on the Theory and Applications of Cryptographic Techniques, 541–554 (Springer, 2004).
Saxena, S., Bhushan, B. & Ahad, M. A. Blockchain based solutions to secure iot: Background, integration trends and a way forward. J. Netw. Comput. Appl. 181, 103050 (2021).
Salimitari, M., Chatterjee, M. & Fallah, Y. P. A survey on consensus methods in blockchain for resource-constrained iot networks. Internet Things 11, 100212 (2020).
Bellavista, P. et al. Interoperable blockchains for highly-integrated supply chains in collaborative manufacturing. Sensors 21, 4955 (2021).
Cai, W. et al. Decentralized applications: The blockchain-empowered software system. IEEE Access 6, 53019–53033 (2018).
Puthal, D., Malik, N., Mohanty, S. P., Kougianos, E. & Das, G. Everything you wanted to know about the blockchain: Its promise, components, processes, and problems. IEEE Consum. Electron. Mag. 7, 6–14 (2018).
Cao, B. et al. Performance analysis and comparison of pow, pos and dag based blockchains. Digital Commun. Netw. 6, 480–485 (2020).
Stifter, N., Judmayer, A. & Weippl, E. Revisiting practical byzantine fault tolerance through blockchain technologies. In Security and Quality in Cyber-Physical Systems Engineering, 471–495 (Springer, 2019).
Gruska, J. et al.Quantum computing, vol. 2005 (McGraw-Hill London, 1999).
Feynman, R. P. Simulating physics with computers. In Feynman and computation, 133–153 (CRC Press, 2018).
Levine, I. N., Busch, D. H. & Shull, H. Quantum chemistry Vol. 6 (Pearson, New york, USA, 2009).
Gyongyosi, L. & Imre, S. A survey on quantum computing technology. Comput. Sci. Rev. 31, 51–71 (2019).
Giani, A. & Eldredge, Z. Quantum computing opportunities in renewable energy. SN Comput. Sci. 2, 393 (2021).
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Li, Y., Tian, M., Liu, G., Peng, C. & Jiao, L. Quantum optimization and quantum learning: A survey. Ieee Access 8, 23568–23593 (2020).
Orús, R., Mugel, S. & Lizaso, E. Quantum computing for finance: Overview and prospects. Rev. Phys. 4, 100028 (2019).
Bova, F., Goldfarb, A. & Melko, R. G. Commercial applications of quantum computing. EPJ Quant. Technol. 8, 2 (2021).
Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).
Home, D. & Selleri, F. Bell’s theorem and the epr paradox. La Rivista del Nuovo Cimento 1978–1999(14), 1–95 (1991).
Nielsen, M. A. & Chuang, I. Quantum computation and quantum information, book (2002).
O’brien, J. L. Optical quantum computing. Science 318, 1567–1570 (2007).
Berman, P. R. Cavity quantum electrodynamics. osti.gov (1994).
Häffner, H., Roos, C. F. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008).
Cory, D. G., Price, M. D. & Havel, T. F. Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing. Phys. D 120, 82–101 (1998).
Stamp, P. C. & Gaita-Arino, A. Spin-based quantum computers made by chemistry: Hows and whys. J. Mater. Chem. 19, 1718–1730 (2009).
Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).
Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).
Mermin, N. D. Quantum computer science: an introduction (Cambridge University Press, 2007).
Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995).
Simon, D. R. On the power of quantum computation. SIAM J. Comput. 26, 1474–1483 (1997).
Ezawa, H. & Murayama, Y. Quantum Control and Measurement (Elsevier, 1993).
Criger, B., Moussa, O. & Laflamme, R. Quantum error correction with mixed ancilla qubits. Phys. Rev. A 85, 044302 (2012).
Das, A. & Chakrabarti, B. K. Quantum annealing and related optimization methods, vol. 679 (Springer Science & Business Media, 2005).
Hen, I. & Spedalieri, F. M. Quantum annealing for constrained optimization. Phys. Rev. Appl. 5, 034007 (2016).
Bian, Z. et al. Discrete optimization using quantum annealing on sparse ising models. Front. Phys. 2, 56 (2014).
Abel, S., Chancellor, N. & Spannowsky, M. Quantum computing for quantum tunneling. Phys. Rev. D 103, 016008 (2021).
Pittenger, A. O. An introduction to quantum computing algorithms,Book, vol. 19 (Springer Science & Business Media, 2012).
Simon, C. et al. Quantum memories. Eur. Phys. J. D 58, 1–22 (2010).
Brassard, G. & Hoyer, P. An exact quantum polynomial-time algorithm for simon’s problem. In In Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems, 12–23 (IEEE, 1997).
Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proceedings of the forty-third annual ACM symposium on Theory of computing, 333–342 (2011).
Bernstein, E. & Vazirani, U. Quantum complexity theory. In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, 11–20 (1993).
Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999).
van Dam, W. & Seroussi, G. Efficient quantum algorithms for estimating gauss sums (2002). arXiv:quant-ph/0207131.
Aaronson, S. Bqp and the polynomial hierarchy. In Proceedings of the forty-second ACM symposium on Theory of computing, 141–150 (2010).
Kitaev, A. Y. Quantum measurements and the abelian stabilizer problem (1995). arXiv:quant-ph/9511026.
Ettinger, M., Høyer, P. & Knill, E. The quantum query complexity of the hidden subgroup problem is polynomial. Inf. Process. Lett. 91, 43–48 (2004).
Brassard, G., Høyer, P. & Tapp, A. Quantum counting. In In Proceedings of the 25th International Colloquium, ICALP’98 Aalborg, Denmark, July 13–17, 1998, 820–831 (Springer, 1998).
Grover, L. K. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 212–219 (1996).
Xia, F. et al. Random walks: A review of algorithms and applications. IEEE Trans. Emerg. Top. Comput. Intell. 4, 95–107 (2019).
Ambainis, A. Quantum walk algorithm for element distinctness. SIAM J. Comput. 37, 210–239 (2007).
Magniez, F., Santha, M. & Szegedy, M. Quantum algorithms for the triangle problem. SIAM J. Comput. 37, 413–424 (2007).
Chaichian, M. & Demichev, A. P. Introduction to quantum groups (World Scientific, 1996).
Montanaro, A. Quantum algorithms: An overview. NPJ Quant. Inf. 2, 1–8 (2016).
Adleman, L. M., Demarrais, J. & Huang, M.-D.A. Quantum computability. SIAM J. Comput. 26, 1524–1540 (1997).
Lomonaco, S. J. & Kauffman, L. H. Quantum knots and mosaics. AMS PSAPM 68, 177–208 (2010).
Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153 (2014).
Cai, X.-D. et al. Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110, 230501 (2013).
Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm (2014). arXiv:1411.4028.
Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).
Mosca, M. Cybersecurity in an era with quantum computers: Will we be ready?. IEEE Secur. Privacy 16, 38–41 (2018).
Fedorov, A. K., Kiktenko, E. O. & Lvovsky, A. I. Quantum computers put blockchain security at risk (2018).
Ikeda, K. Security and privacy of blockchain and quantum computation. In jouranl of Advances in Computers, vol. 111, 199–228 (Elsevier, 2018).
Lamport, L., Shostak, R. & Pease, M. The byzantine generals problem. In Concurrency: the works of leslie lamport, 203–226 (ACM, 2019).
Hankerson, D., Menezes, A. J. & Vanstone, S. Guide to elliptic curve cryptography (Springer Science & Business Media, 2006).
Renner, R. Security of quantum key distribution. Int. J. Quant. Inf. 6, 1–127 (2008).
Djordjevic, I. B. Joint qkd-post-quantum cryptosystems. IEEE. Access 8, 154708–154712 (2020).
Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T. & Smith, A. Detectable byzantine agreement secure against faulty majorities. In Proceedings of the twenty-first annual symposium on Principles of distributed computing, 118–126 (2002).
Alagic, G. et al. Status report on the first round of the NIST post-quantum cryptography standardization process (US Department of Commerce, National Institute of Standards and Technology, 2019).
Alagic, G. et al. Status report on the second round of the nist post-quantum cryptography standardization process (US Department of Commerce, NIST, 2020).
Ding, J., Gower, J. E. & Schmidt, D. S. Multivariate public-key cryptosystems. In In proceedings of the International conference on the Algebra and its application, 79–94 (Springer, 2005).
Khot, S. Hardness of approximating the shortest vector problem in lattices. JACM 52, 789–808 (2005).
Micciancio, D. & Regev, O. Lattice-based cryptography. In Post-quantum cryptography, 147–191 (Springer, 2009).
Childs, A., Jao, D. & Soukharev, V. Constructing elliptic curve isogenies in quantum subexponential time. J. Math. Cryptol. 8, 1–29 (2014).
Jao, D. & De Feo, L. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In In proceedings of the International Workshop on Post-Quantum Cryptography, 19–34 (Springer, 2011).
Kuznetsov, A., Kiian, A., Lutsenko, M., Chepurko, I. & Kavun, S. Code-based cryptosystems from nist pqc. In In proceedings of IEEE 9th International Conference on Dependable Systems, Services and Technologies, 282–287 (IEEE, 2018).
Bernstein, D. J., Lange, T. & Peters, C. Attacking and defending the mceliece cryptosystem. In International Workshop on Post-Quantum Cryptography, 31–46 (Springer, 2008).
Sendrier, N., Nikova, S., Preneel, B. & Storme, L. On the use of structured codes in code based cryptography. Coding Theory Cryptogr. 3, 59–68 (2009).
D’Alconzo, G., Meneghetti, A. & Piasenti, P. Security issues of cfs-like digital signature algorithms (2021). arXiv:2112.00429.
Cayrel, P.-L. & Meziani, M. Post-quantum cryptography: Code-based signatures. In In proceedings of Advances in Computer Science and Information Technology, 82–99 (Springer, 2010).
Bennett, C. H., Bernstein, E., Brassard, G. & Vazirani, U. Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 1510–1523 (1997).
Delfs, H., Knebl, H. & Knebl, H. Introduction to cryptography, vol. 2 (Springer, 2002).
Dods, C., Smart, N. P. & Stam, M. Hash based digital signature schemes. In IMA international conference on cryptography and coding, 96–115 (Springer, 2005).
Becker, G. Merkle signature schemes, merkle trees and their cryptanalysis. Ruhr-University Bochum, Tech. Rep12, 19 (2008).
LAMPORT, L. Constructing digital signatures from a one-way function. Report SRI Intl. CSL 98 (1979).
Bernstein, D. J., Chuengsatiansup, C., Lange, T. & Vredendaal, C. v. Ntru prime: reducing attack surface at low cost. In proceedings of the International Conference on Selected Areas in Cryptography, 235–260 (Springer, 2017).
Aragon, N. et al. Bike: bit flipping key encapsulation. Report: ffhal-01671903f (2017).
is renamed ROLLO, L. et al. Rollo-rank-ouroboros, lake & locker. Second PQC Standardization Conference (2019).
D’Anvers, J.-P., Karmakar, A., Sinha Roy, S. & Vercauteren, F. Saber: Module-lwr based key exchange, cpa-secure encryption and cca-secure kem. In In proceedings of the International Conference on Cryptology in Africa, 282–305 (Springer, 2018).
Chiano, N. D., Longo, R., Meneghetti, A. & Santilli, G. A survey on nist pq signatures (2021). arXiv:2107.11082.
Campbell, R. Sr. Evaluation of post-quantum distributed ledger cryptography. J. Br. Blockchain Assoc. 2, 7679 (2019).
Alkim, E. et al. The lattice-based digital signature scheme qtesla. In In proceedings of International Conference on Applied Cryptography and Network Security, 441–460 (Springer, 2020).
Edwards, M., Mashatan, A. & Ghose, S. A review of quantum and hybrid quantum/classical blockchain protocols. Quant. Inf. Process. 19, 1–22 (2020).
Wiesner, S. Conjugate coding. ACM Sigact News 15, 78–88 (1983).
Zhandry, M. Quantum lightning never strikes the same state twice or quantum money from cryptographic assumptions. J. Cryptol. 34, 1–56 (2021).
Fernandez-Carames, T. M. & Fraga-Lamas, P. Towards post-quantum blockchain: A review on blockchain cryptography resistant to quantum computing attacks. IEEE Access 8, 21091–21116 (2020).
Jatoth, C., Gangadharan, G. & Buyya, R. Computational intelligence based qos-aware web service composition: A systematic literature review. IEEE Trans. Serv. Comput. 10, 475–492 (2015).
Kiktenko, E. O. et al. Quantum-secured blockchain. Quant. Sci. Technol. 3, 035004 (2018).
Mishra, S., Thapliyal, K., Rewanth, S. K., Parakh, A. & Pathak, A. Anonymous voting scheme using quantum assisted blockchain (2022). arXiv:2206.03182.
Sun, X., Sopek, M., Wang, Q. & Kulicki, P. Towards quantum-secured permissioned blockchain: Signature, consensus, and logic. Entropy 21, 887 (2019).
Dai, W. Internet of quantum blockchains: security modeling and dynamic resource pricing for stable digital currency (2021). arXiv:2104.07323.
Nilesh, K. & Panigrahi, P. K. Quantum blockchain based on dimensional lifting generalized gram-schmidt procedure. IEEE Access 10, 103212–103222 (2022).
Iovane, G. Murequa chain: Multiscale relativistic quantum blockchain. IEEE Access 9, 39827–39838 (2021).
Banerjee, S., Mukherjee, A. & Panigrahi, P. K. Quantum blockchain using weighted hypergraph states. Phys. Rev. Res. 2, 013322 (2020).
Rajan, D. & Visser, M. Quantum blockchain using entanglement in time. Quant. Rep. 1, 3–11 (2019).
Gao, Y.-L. et al. A novel quantum blockchain scheme base on quantum entanglement and dpos. Quant. Inf. Process. 19, 1–15 (2020).
Wang, W., Yu, Y. & Du, L. Quantum blockchain based on asymmetric quantum encryption and a stake vote consensus algorithm. Sci. Rep. 12, 1–12 (2022).
Shor, P. W. & Preskill, J. Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000).
Iovane, G. Computational quantum key distribution (cqkd) on decentralized ledger and blockchain. J. Disc. Math. Sci. Cryptogr. 24, 1021–1042 (2021).
Chen, J. & Micali, S. Algorand (2017). arXiv:1607.01341.
Bedington, R., Arrazola, J. M. & Ling, A. Progress in satellite quantum key distribution. NPJ Quant. Inf. 3, 1–13 (2017).
Jin, X.-R. et al. Three-party quantum secure direct communication based on ghz states. Phys. Lett. A 354, 67–70 (2006).
Zhang, P., Wang, L., Wang, W., Fu, K. & Wang, J. A blockchain system based on quantum-resistant digital signature. Secur. Commun. Netw. 2021 (2021).
Easttom, C. Ntru and lash for a quantum resistant blockchain. In In proceedings of the IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), 0654–0658 (IEEE, 2022).
Holcomb, A., Pereira, G., Das, B. & Mosca, M. Pqfabric: a permissioned blockchain secure from both classical and quantum attacks. In In proceedings of IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 1–9 (IEEE, 2021).
Yi, H., Li, Y., Wang, M., Yan, Z. & Nie, Z. An efficient blockchain consensus algorithm based on post-quantum threshold signature. Big Data Res. 26, 100268 (2021).
Saha, R. et al. A blockchain framework in post-quantum decentralization. IEEE Transactions on Services Computing (2021).
Esgin, M. F., Steinfeld, R. & Zhao, R. K. Matrict+: more efficient post-quantum private blockchain payments. In 2022 IEEE Symposium on Security and Privacy (SP), 1281–1298 (IEEE, 2022).
Chen, J., Gan, W., Hu, M. & Chen, C.-M. On the construction of a post-quantum blockchain for smart city. J. Inf. Secur. Appl. 58, 102780 (2021).
Li, C.-Y., Chen, X.-B., Chen, Y.-L., Hou, Y.-Y. & Li, J. A new lattice-based signature scheme in post-quantum blockchain network. IEEE Access 7, 2026–2033 (2018).
Gao, Y.-L. et al. A secure cryptocurrency scheme based on post-quantum blockchain. IEEE Access 6, 27205–27213 (2018).
Esgin, M. F., Zhao, R. K., Steinfeld, R., Liu, J. K. & Liu, D. Matrict: efficient, scalable and post-quantum blockchain confidential transactions protocol. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 567–584 (2019).
Sun, S.-F., Au, M. H., Liu, J. K. & Yuen, T. H. Ringct 2.0: A compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency monero. In In proceedings of European Symposium on Research in Computer Security, 456–474 (Springer, 2017).
Möser, M. et al. An empirical analysis of traceability in the monero blockchain (2018). arXiv:1704.04299.
Yuen, T. H. et al. Ringct 3.0 for blockchain confidential transaction: Shorter size and stronger security. In International Conference on Financial Cryptography and Data Security, 464–483 (Springer, 2020).
Lai, R. W. et al. Omniring: Scaling private payments without trusted setup. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 31–48 (2019).
Ajtai, M. Generating hard instances of lattice problems. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 99–108 (1996).
Agrawal, S., Boneh, D. & Boyen, X. Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical ibe. In Annual cryptology conference, 98–115 (Springer, 2010).
Yin, W., Wen, Q., Li, W., Zhang, H. & Jin, Z. An anti-quantum transaction authentication approach in blockchain. IEEE Access 6, 5393–5401 (2018).
Dickson, L. E. Linear groups: With an exposition of the Galois field theory, vol. 6 (BG Teubner, 1901).
Azzaoui, A. E. & Park, J. H. Post-quantum blockchain for a scalable smart city. J. Internet Technol. 21, 1171–1178 (2020).
Yi, H. Secure social internet of things based on post-quantum blockchain. IEEE Trans. Netw. Sci. Eng. (2021).
Trivedi, S., Mehta, K. & Sharma, R. Systematic literature review on application of blockchain technology in e-finance and financial services. J. Technol. Manag. Innov. 16, 89–102 (2021).
Kar, A. K. & Navin, L. Diffusion of blockchain in insurance industry: An analysis through the review of academic and trade literature. Telemat. Inf. 58, 101532 (2021).
Hou, H. The application of blockchain technology in e-government in china. In In proceedings of 26th International Conference on Computer Communication and Networks (ICCCN), 1–4 (IEEE, 2017).
Lanzagorta, M. Quantum radar. Synth. Lect. Quant. Comput. 3, 1–139 (2011).
Shahid, F., Khan, A. & Jeon, G. Post-quantum distributed ledger for internet of things. Comput. Electr. Eng. 83, 106581 (2020).
Jiang, W., Han, B., Habibi, M. A. & Schotten, H. D. The road towards 6g: A comprehensive survey. IEEE Open J. Commun. Soc. 2, 334–366 (2021).
Gill, S. S. et al. Quantum computing: A taxonomy, systematic review and future directions. Softw. Pract. Exp. 52, 66–114 (2022).
[ad_2]
Source link